On Simultaneous Farthest Points in L∞(I, X)
نویسندگان
چکیده
Let X be a Banach space and let G be a closed bounded subset of X. For x1, x2, . . . , xm ∈ X, we set ρ x1, x2, . . . , xm,G sup{max1≤i≤m‖xi−y‖ : y ∈ G}. The setG is called simultaneously remotal if, for any x1, x2, . . . , xm ∈ X, there exists g ∈ G such that ρ x1, x2, . . . , xm,G max1≤i≤m‖xi−g‖. In this paper, we show that if G is separable simultaneously remotal in X, then the set of ∞Bochner integrable functions, L∞ I, G , is simultaneously remotal in L∞ I, X . Some other results are presented.
منابع مشابه
SOME NEW RESULTS ON REMOTEST POINTS IN NORMED SPACES
In this paper, using the best proximity theorems for an extensionof Brosowski's theorem. We obtain other results on farthest points. Finally, wedene the concept of e- farthest points. We shall prove interesting relationshipbetween the -best approximation and the e-farthest points in normed linearspaces (X; ||.||). If z in W is a e-farthest point from an x in X, then z is also a-best approximati...
متن کاملOn co-Farthest Points in Normed Linear Spaces
In this paper, we consider the concepts co-farthest points innormed linear spaces. At first, we define farthest points, farthest orthogonalityin normed linear spaces. Then we define co-farthest points, co-remotal sets,co-uniquely sets and co-farthest maps. We shall prove some theorems aboutco-farthest points, co-remotal sets. We obtain a necessary and coecient conditions...
متن کاملREMOTAL CENTERS AND CHEBYSHEV CENITERS IN NORMED SPACES
In this paper, we consider Nearest points" and Farthestpoints" in normed linear spaces. For normed space (X; ∥:∥), the set W subset X,we dene Pg; Fg;Rg where g 2 W. We obtion results about on Pg; Fg;Rg. Wend new results on Chebyshev centers in normed spaces. In nally we deneremotal center in normed spaces.
متن کاملw_0-Nearest Points and w_0-Farthest Point in Normed Linear Spaces
w0-Nearest Points and w0-Farthest Point in Normed Linear Spaces
متن کاملClosability of Farthest Point Maps in Fuzzy Normed Spaces (dedicated in Occasion of the 70-years of Professor
Let (X,N) be a fuzzy normed space. For each 0 < < 1 and a non-empty subset A of X, we define a natural notion for -farthest points from A and a set-valued map x 7→ Q (A, x), called the fuzzy -farthest point map. Then we will investigate basic properties of the fuzzy -farthest point mapping. In particular, we show that the fuzzy -farthest point map is closable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011